2,979 research outputs found

    Electron-based crystalline undulator

    Full text link
    We discuss the features of a crystalline undulator of the novel type based on the effect of a planar channeling of ultra-relativistic electrons in a periodically bent crystals. It is demonstrated that an electron-based undulator is feasible in the tens of GeV range of the beam energies, which is noticeably higher than the energy interval allowed in a positron-based undulator. Numerical analysis of the main parameters of the undulator as well as the characteristics of the emitted undulator radiation is carried out for 20 and 50 GeV electrons channeling in diamond and silicon crystals along the (111) crystallographic planes.Comment: 16 pages, 8 figures, Latex, IOP styl

    Total spectrum of photon emission by an ultra-relativistic positron channeling in a periodically bent crystal

    Get PDF
    We present the results of numerical calculations of the channelling and undulator radiation generated by an ultra-relativistic positron channelling along a crystal plane, which is periodically bent. The bending might be due either to the propagation of a transverse acoustic wave through the crystal, or due to the static strain as it occurs in superlattices. The periodically bent crystal serves as an undulator. We investigate the dependence of the intensities of both the ordinary channelling and the undulator radiations on the parameters of the periodically bent channel with simultaneous account for the dechannelling effect of the positrons. We demonstrate that there is a range of parameters in which the undulator radiation dominates over the channelling one and the characteristic frequencies of both types of radiation are well separated. This result is important, because the undulator radiation can be used to create a tunable source of X-ray and gamma-radiation.Comment: published in J. Phys. G: Nucl. Part. Phys. 26 (2000) L87-L95, http://www.iop.org ; 12 pages, 4 figures, LaTe

    Coherent radiation of an ultra-relativistic charged particle channeled in a periodically bent crystal

    Full text link
    We suggest a new type of the undulator radiation which is generated by an ultra-relativistic particle channeled along a periodically bent crystallographic plane or axis. The electromagnetic radiation arises mainly due to the bending of the particle's trajectory, which follows the shape of the channel. The parameters of this undulator, which totally define the spectrum and the angular distribution of the radiation (both spontaneous and stimulated), depend on the type of the crystal and the crystallographic plane (axis), on the type of a projectile and its energy, and on the shape of the bent channel, and, thus, can be varied significantly by varying these characteristics. As an example, we consider the acoustically induced radiation (AIR) which is generated by ultra-relativistic particles channeled in a crystal which is bent by a transverse acoustic wave. The AIR mechanism allows to make the undulator with the main parameters varying in wide ranges, which are inaccessible in the undulators based on the motion of particles in the periodic magnetic fields and also in the field of the laser radiation. The intensity of AIR can be easily made larger than the intensity of the radiation in a linear crystal and can be varied in a wide range by varying the frequency and the amplitude of the acoustic wave in the crystal. A possibility to generate stimulated emission of high-energy photons (in keV - MeV region) is also discussed.Comment: published in J. Phys. G: Nucl. Part. Phys. 24 (1998) L45-L53, http://www.iop.or

    Stable propagation of a modulated positron beam in a bent crystal channel

    Full text link
    The propagation of a modulated positron beam in a planar crystal channel is investigated. It is demonstrated that the beam preserves its modulation at sufficiently large penetration depths which opens the prospect of using a crystalline undulator as a coherent source of hard x-rays. This finding is a crucial milestone in developing a new type of lasers radiating in the hard x-ray and gamma-ray range.Comment: 11 pages, 4 figures, iopar

    Channeling of Positrons through Periodically Bent Crystals: on Feasibility of Crystalline Undulator and Gamma-Laser

    Full text link
    The electromagnetic radiation generated by ultra-relativistic positrons channelling in a crystalline undulator is discussed. The crystalline undulator is a crystal whose planes are bent periodically with the amplitude much larger than the interplanar spacing. Various conditions and criteria to be fulfilled for the crystalline undulator operation are established. Different methods of the crystal bending are described. We present the results of numeric calculations of spectral distributions of the spontaneous radiation emitted in the crystalline undulator and discuss the possibility to create the stimulated emission in such a system in analogy with the free electron laser. A careful literature survey covering the formulation of all essential ideas in this field is given. Our investigation shows that the proposed mechanism provides an efficient source for high energy photons, which is worth to study experimentally.Comment: 52 pages, MikTeX, 14 figure

    The influence of the dechanneling process on the photon emission by an ultra-relativistc positron channeling in a periodically bent crystal

    Full text link
    We investigate, both analytically and numerically, the influence of the dechanneling process on the parameters of undulator radiation generated by ultra-relativistic positron channelling along a crystal plane, which is periodically bent. The bending might be due either to the propagation of a transverse acoustic wave through the crystal, or due to the static strain as it occurs in superlattices. In either case the periodically bent crystal serves as an undulator which allows to generate X-ray and gamma-radiation. We propose the scheme for accurate quantitative treatment of the radiation in presence of the dechanneling. The scheme includes (i) the analytic expression for spectral-angular distribution which contains, as a parameter, the dechanneling length, (ii) the simulation procedure of the dechanneling process of a positron in periodically bent crystals. Using these we calculate the dechanneling lengths of 5 GeV positrons channeling in Si, Ge and W crystals, and the spectral-angular and spectral distributions of the undulator over broad ranges of the photons. The calculations are performed for various parameters of the channel bending.Comment: published in J. Phys. G: Nucl. Part. Phys. 27 (2001) 95-125, http://www.iop.or

    One-dimensional Model of a Gamma Klystron

    Full text link
    A new scheme for amplification of coherent gamma rays is proposed. The key elements are crystalline undulators - single crystals with periodically bent crystallographic planes exposed to a high energy beam of charged particles undergoing channeling inside the crystals. The scheme consists of two such crystals separated by a vacuum gap. The beam passes the crystals successively. The particles perform undulator motion inside the crystals following the periodic shape of the crystallographic planes. Gamma rays passing the crystals parallel to the beam get amplified due to interaction with the particles inside the crystals. The term `gamma klystron' is proposed for the scheme because its operational principles are similar to those of the optical klystron. A more simple one-crystal scheme is considered as well for the sake of comparison. It is shown that the gamma ray amplification in the klystron scheme can be reached at considerably lower particle densities than in the one-crystal scheme, provided that the gap between the crystals is sufficiently large.Comment: RevTeX4, 22 pages, 4 figure
    • …
    corecore